

AC SERVO PRESS Intelligent press system for the new era

FEATURES

Sophisticated Press Tool

1. Compact Design

The design combines mechanical strength with the compactness of a hydraulic cylinder.

Space-saving design and minimum mounting pitches allow for multi-axis press fitting.

2. Intelligent Functionality

The press tool is equipped with a CPU enabling it to store items such as model numbers and load values in a self-memory, and thereby eliminating controller mismatch errors.

3. Maintenance Support

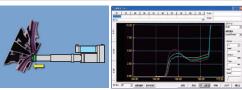
This press tool performs self-control of operation counts and travel distances to support systematic maintenance.

Wide Variety of Network Functions

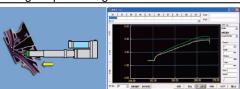
1. Ethernet Capability

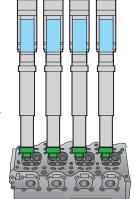
Compared to the RS-485, this series provides unparalleled high-speed signal functionality. Even large volumes of graphical data can be collected nearly instantaneously resulting in compact cycle times.

2. Improved Traceability


Installation of optional circuit boards provides compatibility with CC-Link, DeviceNet, Profibus and other applications.

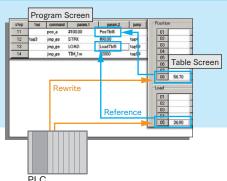
Supporting PLC memory storage of numerical results in addition to basic input/output operations.


3. Production of a Wide Variety of Product Models


Major parameters within programs can be changed through a PLC. Creation of a single program allows for handling variations between multiple product models.

Valve seat press fitting

Valve guide press fitting



Program Rewrite/Reference Table

- Program can be easily changed externally by using a table reference format for parameters such as load, stroke and speed.
- •Rewriting of limit value can be performed in the same manner.
- This function is easily enabled by the use of optional circuit boards.

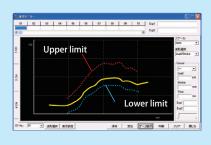
3

Flexible Capacity of Various Applications

1. New Programming Methods for High Level of Freedom

A specialized language for the servo press has been developed that permits description of complicated motions equivalent to robotic control systems.

2. Easy Program Creation


Automatic program creation function included as standard on PC applications allowing for complete creation of general-purpose programs with only a requisite minimum of settings.

3. Variety of Evaluation Methods

Load, stroke and load rate values are evaluated according to final and peak points, as well as points at your discretion. A zone evaluation function has also been newly adopted.

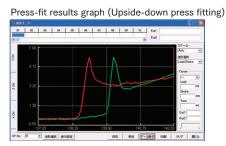
What is zone evaluation?

- Zone evaluation allows for continuous evaluation in the stroke-load area.
- "Zone" refers to the evaluation area created by a tolerance range added to the actual measured curve
- •The unit is immediately stopped if outside of the zone.
- •A maximum of 32 zones can be used.
- Switching between numerous zones within a single program is also possible.

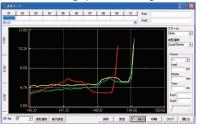
IAC SERVO PRESS

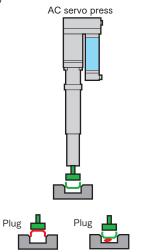
MAIN APPLICATIONS

Bearing press fitting
Valve seat press fitting

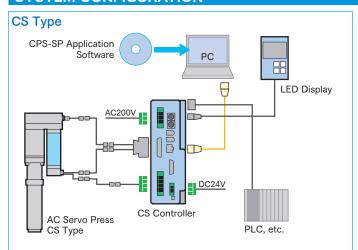

g Riveting ting Pin press fitting

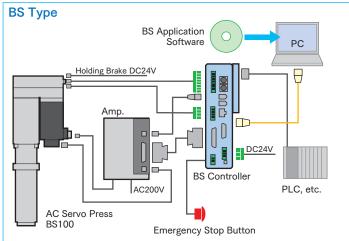
Valve guide press fitting Bushing press fitting Multi-stage press fitting Flattening/Straightening


Plug press fitting



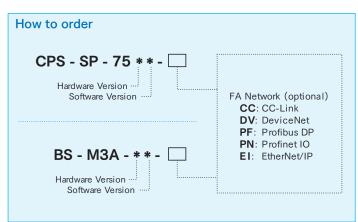
Example of Actual Use (Plug press-fit results)





Upside-down press fitting

Debris caught


SYSTEM CONFIGURATION

CONTROLLERS

AC SERVO PRESS

LINEUP							
Model No.	CS05	CS10	CS20	CS30	CS50	BS100	BS200
Max. Force*1(kN)	5	10	20	30	50	100	200
Stroke(mm)	100/250 100/200/350				100/200/350	100/200	
Max. Speed(mm/s)	300	180	270	240	150	150	110
Controller			CPS-SP-75**			BS-M3A-1	A + Amp.
Load Accuracy				±1.5% @Load	d cell FS		
Load Repeatability				±0.5% @Load	d cell FS		
Positional Repeatability			±0.	01mm (under id	dentical load)		
Ambient Conditions	0~45°C / 85% or less (with no condensation)						
Max. Power Capacity(kVA)	0.75	0.75	1.85	2.5	3.5	7.5	10.0

%1 This is not continuous operating force. 70% of Max. force is recommended for repeated operations.

How to order

CS30 - 200 B 1 2 3

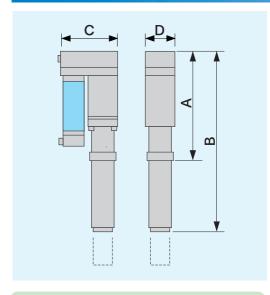
①Model No. ②Stroke(mm)

100/250·····CS05/10 100/200/350 ····· CS20/30/50

③ Holding BrakeB: With Holding Brake: Without Holding Brake

BS200 - 200 B C 1

2 3 4 ①Model No. ②Stroke(mm)


100/200/350 ····· BS100 100/200 · · · · · · · · · BS200 3 Holding Brake

B: With Holding Brake - : Without Holding Brake

Built-in Load cell

C:Without Built-in Load cell (BS200 only) - : With Built-in Load cell (as standard)

TOOL DIMENSIONS

-	Contributing to CO2 reduction
	1.Completely electrically controlled
/ 1	2.Low energy consumption
	3.Compact design
A STATE OF THE PARTY OF THE PAR	

Tool model	A (mm)	B(mm)	C(mm)	D(mm)	Weight(Kg)
CS05-100	335	465	150	65	13
CS05-250	333	670	150	00	18
CS10-100	335	465	150	65	13
CS10-250	333	670	150	00	18 24 80 28 34
CS20-100		510			24
CS20-200	390	650	200	80	28
CS20-350		555 32			
CS30-100		555			32
CS30-200	398	680	215	94	36
CS30-350		860			42
CS50-100		810			73
CS50-200	565	890	260	135	79
CS50-350		1070			93
BS100-100		780			84
BS100-200	535	860	290	135	90
BS100-350		1040			104
BS200-100	701	1038	4E 1	000	170
BS200-200	721	1138	451	228	184

